Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 159
Filtre
1.
ERS Monograph ; 2022(98):48-58, 2022.
Article Dans Anglais | EMBASE | ID: covidwho-20238378

Résumé

Air pollution, climate and population health are closely related in terms of their impacts on respiratory health and lung cancer. Air pollutants contribute to the exacerbation of chronic respiratory problems such as COPD and asthma. Air pollutants are also toxic and carcinogenic, initiating and promoting lung cancer development. Climate change in relation to environmental pollution affects the geographical distribution of food supply and diseases such as pneumonia in adults and children. The threat of air pollution, and hence global warming and climate changes, and their effects on population and respiratory health, is an imminent threat to the world and deserves immediate and sustainable combating strategies and efforts. The goals are to increase public awareness and engagement in action, with alignment of international collaboration and policy, and with steering towards further research. Now is the prime time for international collaborative efforts on planning and actions to fight air pollution and climate change before it is too late.Copyright © ERS 2021.

2.
Green Energy and Technology ; : 217-230, 2023.
Article Dans Anglais | Scopus | ID: covidwho-20238183

Résumé

There is a growing concern about Indoor Environmental Quality (IEQ) in buildings as humans are spending longer in indoor environments, whether this is associated or not with climate change and vulnerability to extreme weather events. In the wake of the COVID pandemic, the need for indoor air quality control is likely to increase, the result of many adaptations in home environments to switch to remote work. In hot countries in the Global South, one of the alternatives is split A/C units with limited air renewal. While, odorless and colorless CO2, commonly generated by occupants through respiration, is among the relevant indoor air pollutants. The purpose of this study is to evaluate a low-cost, responsive air-renewal system in a climate chamber equipped with a standard split A/C unit. The results show the system's feasibility in curbing IAQ concerns and also highlight the risk of negative impacts on indoor thermal conditions and on energy consumption on using A/C. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

3.
IEEE Transactions on Industry Applications ; : 1-7, 2023.
Article Dans Anglais | Scopus | ID: covidwho-20235410

Résumé

In this paper we report two applications of a subcategory of air cleaning devices based on soft ionization that do not cause molecular fragmentation. A system that includes two unipolar ionizing modules has been used to simultaneously produce positive and negative ions in the air. In one set of experiments a large chamber (28 m3) was used to study the effect of ions on reducing PM1.0 particles produced by a research grade calibrated cigarette. The data presented in this paper were obtained using a carbon-brush-based bipolar ionizer and a MERV 10 filter with electret media in a recirculating HVAC system. Significant improvement in removal rate of fine and ultrafine particles was achieved when using the bipolar ionizer in conjunction with the MERV 10 filter. The second set of experiments were conducted using a 36 m3 chamber, following BSL-3 standards, to study the effect of ions on aerosolized SARS-CoV-2. Results of these investigations reveal the inactivation rate of SARS-CoV-2 are enhanced when ions are introduced in the air;inactivation rates were increased by more than 60%and 90%for ion densities of 10,000/cc and 18,000/cc. IEEE

4.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2324809

Résumé

This study combines particle measurements and acoustic measurements to study aerosols generated in breathing, speaking, singing and coughing. Particle measurements are carried out using a portable measurement chamber designed specially for the study. Acoustic measurements of voice production are conduced to standardize measurements in human aerosol emission and to reveal possible reasons for the individual differences in particle generation. Understanding mechanisms of human aerosol generation is important in trying to understand how the airborne transmission of pathogens takes place and furthermore in assessing how to minimize the risk of transmission. The results can be used in the context of all airborne diseases. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

5.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2324682

Résumé

Risk assessment models typically assume ideal mixing, in which the pathogen-laden aerosol particles emitted by a person are evenly distributed in the room. This study points out the local deviation from this idealized assumption and a correlation between the level of pathogen concentration and the distance from the emitter. For this purpose, several numerical studies (CFD) were analyzed, and a validation experiment was performed. Statistical evaluation of the spatial pathogen distribution was used to determine the potential exposure to elevated pathogen concentrations. Compared to an ideally mixed room, at a distance of 1.5 m, the mixing ventilation cases show a 25% risk of being exposed to twice the amount of pathogens and a 5% risk to more than 5 times the assumed value. For displacement ventilation there is a 75% chance of being exposed to less pathogens than in complete mixing at a distance of 1 m. The measurement values agree with the simulation results. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

6.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2324603

Résumé

Building ventilation significantly impacts healthy and safe indoor conditions preventing airborne virus spread between people. Therefore, ventilation strategy is a globally essential and health-promoting research topic. Previous studies showed the importance of sufficient ventilation for diluting the virus concentration and reducing the infection risk. The present study investigates the probability of coronavirus infection in the typical room calculated with the Wells Riley proposes recommendations for further research of indoor airflow effect on the virus transmission. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

7.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2324404

Résumé

Airborne exposure has been highlighted during the COVID-19 pandemic as a probable infection route. This experimental study investigates different protection methods at an office workstation, where the concentration characteristics are studied under the mixing ventilation conditions. The protection methods were the room air purifier, personal air purifier, face mask, and workstation partition panels. In experiments, the breathing machine, nebulizer, and syringe pump was used to generate an aerosol distribution of paraffin oil into the room. The breathing thermal manikin and the thermal dummy simulated the exposed and infected person, respectively. The concentration characteristics were measured from the manikin breathing zone. The temporal concentration characteristics were measured from zero concentration to steady-state conditions. The study provides insights into the effects of different protection methods for occupational health and safety decision-making for office indoor environments. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

8.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2324333

Résumé

Ventilation performance plays a significant role in distributing contaminants and airborne infections indoors. Thus, poorly ventilated public spaces may be at high risk due to the presence of both infectious and susceptible people. Adapting HVAC ventilation systems to mitigate virus transmission requires considering ventilation rate, airflow patterns, air balancing, occupancy, and feature placement. The study aims to identify poorly ventilated spaces where airborne transmission of pathogens such as SARS-CoV-2 could be critical. This study is focused on evaluating the ventilation performance of the building stock and the safety of using the facilities based on measured indoor CO2. The results revealed the spaces with the potential risk of indoor airborne transmission of COVID-19. The study proposes recommendations for utilising air ventilation systems in different use cases. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

9.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2323952

Résumé

The ongoing COVID-19 pandemic has caused millions of deaths worldwide along with detrimental socioeconomic consequences. Existing evidence suggests that the rate of indoor transmission is directly linked with the Indoor Air Quality (IAQ) conditions. Most of the existing methodologies for virus transmissibility risk estimation are based on the well-known Wells-Riley equation and assume well-mixed, uniform conditions;so spatiotemporal variations within the indoor space are not captured. In this work, a novel fine-grained methodology for real-time virus transmission risk estimation is developed using a 3D model of a real office room with 31 occupants. CONTAM-CFD0 software is used to compute the airflow vectors and the resulting 3D CO2 concentration map (attributed to the exhalations from the occupants). Simulation results are also provided that demonstrate the efficacy of using CO2 sensors for estimating the infection risk in real-time in the 3D office environment. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

10.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2323863

Résumé

Short-range exposure to expired aerosols or droplet nuclei has been considered as the predominant route for SARS-CoV-2. The observed effect of mask wearing, and social distancing suggests the importance of expired jet in the spread of COVID-19. The well-known steady-state dilution model is no longer valid for the interrupted expiratory jet. We reanalysed the existing interrupted jet data and proposed a simple dilution model of expired jet using the two-stage jet model. The interrupted jet consists of two stages, i.e., the jet-like and puff-like stage. Results show dilution factor grows linearly with the distance at the jet-like stage but increases with the cubic of the increasing distance in the puff-like stage. Dilution factor at any distance for the puff-like stage decreases as the activity intensifies, which is still much larger than that estimated via the steady jet model. The findings can be further applied into the short-range airborne exposure assessment. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

11.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2323618

Résumé

Microbial contamination of indoor air in public spaces plays an important role in the SARSCoV-2 pandemic. So far, most studies on the reduction of airborne microbial load by UVC irradiation have been conducted as simulations or in laboratory environments. The aim of our study is to demonstrate the efficiency of Upper-Room Ultraviolet Germicidal Irradiation (UVGI) in a real environment like a supermarket. Restrictions on the use of harmful SARSCoV-2 particles for testing in public areas could be circumvented by using airborne germs as indicators. The results of this study show significant germ (bacterial and fungal) reductions by use of UVGI during business hours in a supermarket. Referring to known susceptibility values of airborne germs from previous work, we were able to estimate the effectiveness of the UVGI-system used against corona viruses. It met the requirements for complete disinfection. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

12.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2323383

Résumé

In this paper a numerical methodology for close proximity exposure (<2m) is applied to the analysis of aerosol airborne dispersion and SARS-CoV-2 potential infection risk during short journeys in passenger cars. It consists of a three-dimensional transient Eulerian-Lagrangian numerical model coupled with a recently proposed SARS-CoV-2 emission approach, using the open-source software OpenFOAM. The numerical tool, validated by Particle Image Velocimetry (PIV), is applied to the simulation of aerosol droplets emitted by a contagious subject in a car cabin during a 30-minute journey and to the integrated risk assessment for SARS-CoV-2 for the other passengers. The effects of different geometrical and thermo-fluid-dynamic influence parameters are investigated, showing that both the position of the infected subject and the ventilation system design affect the amount of virus inhaled and the highest-risk position inside the passenger compartment. Calculated infection risk, for susceptible passengers in the car, can reach values up to 59%. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

13.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2322794

Résumé

Increased usage of chemical disinfectants during the COVID-19 pandemic may impact the chemical composition of indoor air in residential and commercial buildings. This study characterized gas-phase concentrations of volatile organic compounds (VOCs) during multi-surface disinfection activities in a tiny house research facility. This unique facility provided a controlled, yet realistic environment for simulating whole-building disinfection events. VOCs were measured in real-time (1 Hz) in the bulk air of the tiny house with a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS). In addition, particle number (PN) size distributions were measured with a high-resolution electrical low-pressure impactor (HR-ELPI+). PTR-TOF-MS measurements demonstrate that chemical disinfectant spray products applied to multiple surfaces can substantially increase indoor VOC concentrations. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

14.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2322790

Résumé

To investigate the sufficiency of ventilation during the COVID-19 pandemic for school children, a field study was conducted in 37 classrooms of 11 Dutch secondary schools between October 2020 and June 2021. All the classrooms were visited twice, before and after a three-month national lockdown, when different measures against COVID-19 were taken by the schools. For each visit, both CO2 concentrations and air temperature were measured during school hours, and detailed information on building/classroom characteristics, occupancy, and COVID-19 measures was collected. Results show that before the lockdown, CO2 concentrations in most classrooms exceeded the threshold levels of the Dutch Fresh Schools guidelines. The significantly lower CO2 concentrations measured after the lockdown, however, were mainly due to the decreased occupancy. Moreover, with windows and doors always being opened on purpose, the performance of different ventilation regimes could not be compared, while such behaviour may also lead to thermal discomfort for school children. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

15.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2322568

Résumé

In recent work, a Hierarchical Bayesian model was developed to predict occupants' thermal comfort as a function of thermal indoor environmental conditions and indoor CO2 concentrations. The model was trained on two large IEQ field datasets consisting of physical and subjective measurements of IEQ collected from over 900 workstations in 14 buildings across Canada and the US. Posterior results revealed that including measurements of CO2 in thermal comfort modelling credibly increases the prediction accuracy of thermal comfort and in a manner that can support future thermal comfort prediction. In this paper, the predictive model of thermal comfort is integrated into a building energy model (BEM) that simulates an open-concept mechanically-ventilated office space located in Vancouver. The model predicts occupants' thermal satisfaction and heating energy consumption as a function of setpoint thermal conditions and indoor CO2 concentrations such that, for the same thermal comfort level, higher air changes per hour can be achieved by pumping a higher amount of less-conditioned fresh air. The results show that it is possible to reduce the energy demand of increasing fresh air ventilation rates in winter by decreasing indoor air temperature setpoints in a way that does not affect perceived thermal satisfaction. This paper presents a solution for building managers that have been under pressure to increase current ventilation rates during the COVID-19 pandemic. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

16.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2322412

Résumé

To find out the circumstances under which airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) would happen, we conducted mechanistic and systematic modelling of two Coronavirus disease 2019 (COVID-19) outbreaks, i.e., Hunan 2-bus outbreak and Luk Chuen House outbreak (the horizontal cluster). Computational fluid dynamics (CFD) simulations, multi-zone airflow modelling, multi-route mechanistic modelling, and dose-response estimation were carried out selectively according to the transmission characteristics in each outbreak. Our results revealed that poorly ventilated bus indoor environments bred the Hunan 2-bus outbreak in which airborne transmission predominates;prevailing easterly background wind and probable door opening behaviour led to the secondary infections across the corridor in Luk Chuen House outbreak. Measures to facilitate sufficient ventilation indoors and positive pressure in the housing building corridor may help minimise infection risk. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

17.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2322331

Résumé

This investigation presents results of Computational Fluid Dynamics (CFD) modelling of aerosol behaviour within an arbitrary 'realistic' 100m2 office environment, with dynamic and variable respiratory droplet release profile applied based on published findings (Morawska et al., 2009). A multitude of ventilation strategies and configurations have been applied to the base model to compare the effectiveness of reducing the concentration of suspended aerosols over time. A key finding of the investigation indicates a relatively low sensitivity to increasing outside air percentage, and that the benefit from this strategy is heavily dependent on the in-duct droplet decay factor. The application of local recirculating air filtration systems with MERV-13 filters mounted on occupant desks proved significantly more effectiveness than increasing outside air concentration from 25% to 100% in reducing the quantity of suspended aerosols. This highlights that the ventilation industry should perhaps focus on opportunities to integrate filtration systems into furniture, partitions, cabinetry etc., and that an appliance-based solution may be more beneficial for reducing COVID-19 transmission in buildings (and likely more straightforward) than modifications to central ventilation systems, particularly in the application of refurbishments and retrofits. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

18.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2322205

Résumé

The SARS-CoV-2 virus and its variants and COVID-19 disease have affected every aspect of society. The US National Academy of Sciences has been providing scientific insights and advice to aid policymakers and researchers in their quest to respond to the pandemic. Since 2020, it has produced numerous reports and workshop proceedings intended to integrate science into national preparedness and response decision-making, to explore lessons learned and best practices from previous preparedness and response efforts, and to consider strategies for addressing misinformation (NASEM, 2021). Among these was a 2021 symposium series that analyzed engineering's role in catalyzing COVID-19 response, recovery, and resilience, examining topics including the mitigation of exposure in public transit systems, engineering solutions to managing pathogens indoors, and the factors influence the transmission of infectious diseases in cities. Speaker presentations addressing these indoor environment topics are summarized here. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

19.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2322032

Résumé

The validity of using CO2 as an indicator of airborne infection probability was studied. Tracer gas measurements were conducted in a field lab with two breathing thermal manikins resembling "infected” and "susceptible” persons seated at desks. The room was ventilated with a mixing air distribution. Experiments were performed at three ventilation rates. CO2 gas was dosed into the air exhaled by the manikins to simulate the metabolic CO2 generation by people. Simultaneously, nitrous oxide (N2O) tracer gas was dosed into the air exhaled by one of the manikins ("infected person”) to simulate the emission of exhaled infectious particles. CO2 and N2O concentrations were measured at several points. The probability of infection was calculated based on the concentration of CO2 and N2O measured in the air inhaled by the exposed manikin ("susceptible person”). The results did not confirm that CO2 can be used as a proxy to assess the infection probability. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

20.
Complexity ; 2023, 2023.
Article Dans Anglais | ProQuest Central | ID: covidwho-2321855

Résumé

Public libraries are popular gathering places, so understanding the factors that contribute to colony-forming unit (CFU) concentrations and how to minimize them is essential. This study aimed to investigate the factors that affect CFU concentrations in a public library, using air sampling (Bioluminescent ATP-assay) and statistical analysis software (SPSS) to collect and analyze data. The findings indicated that the CFU concentration in the library was significantly influenced by the air quality surrounding the building, the number of library visitors, and the hygiene and health of both visitors and employees. Additionally, indoor temperature and humidity were found to be key factors affecting CFU concentration. These findings suggest the need for better ventilation and air filtration systems, as well as regular cleaning and disinfection in public libraries. Furthermore, research is recommended to investigate other potential factors that may impact indoor air quality in public spaces.

SÉLECTION CITATIONS
Détails de la recherche